Assignment 12.

Isolated singular points

This assignment is due Wednesday, April 22. Collaboration is welcome. If you do collaborate, make sure to write/type your own paper.

- (1) Find and classify singular points (i.e. in each case decide whether the point is removable, a pole of order N, essential, or not an isolated singular point),
 - including infinity, of the following functions: (a) $\frac{1}{z-z^3}$, (b) $\frac{1}{(z^2+4)^2}$, (c) $\frac{e^z}{1+z^2}$, (d) $\frac{z^2+1}{e^z}$, (e) $\frac{1}{e^z-1} \frac{1}{z}$, (f) e^{-1/z^2} , (g) $\cot \frac{1}{z}$, (h) $e^{-z} \cos \frac{1}{z}$, (i) $e^{\cot \frac{1}{z}}$, (j) $\cot \frac{1}{z} \frac{1}{z}$, (k) $\sin \left(\frac{1}{\cos \frac{1}{z}}\right)$. (*Hint:* Among other things, the problems below may help.)

- (2) Suppose $z_0 \in \mathbb{C}$ is an isolated singular point of the function f of a given type (removable, pole of order N, essential). Show that z_0 is an isolated singular point of
 - (a) g(z) = 1/f(z) (here additionally assume that f(z) has no zeros in some punctured neighborhood of z_0),
 - (b) $h(z) = f^2(z)$
 - and find its type.
- (3) (a) Suppose f(z) and g(z) have poles or order m and n, respectively, at a point $z_0 \in \mathbb{C}$, with $m \neq n$. Show that z_0 is an isolated singular point of f + g and find its type.
 - (b) Same question when m = n.
- (4) (a) Suppose f(z) is analytic and nonzero at $z_0 \in \mathbb{C}$, and that g(z) has a non-removable isolated singularity of a given type at z_0 . Show that z_0 is an isolated singular point of fg and find its type.
 - (b) Same question when z_0 is a pole of order N of f.
 - (c) Can anything be asserted about the type of z_0 for fg if f and g have essential singularity at z_0 ?